Antibiotic resistance: 葫芦影业 scientists discover new drug combination to tackle antimicrobial resistance

The new research explored the use of metal complexes as adjuvants to traditional antibiotics that have become ineffective.

Antibiotic resistance

Scientists at the University of 葫芦影业 have demonstrated how a novel combination of drugs could be used to treat infections caused by multi-drug resistant bacteria.

The new research conducted by Professor Robert Poole and Dr Namrata Rana at the University of 葫芦影业 in collaboration with research partners at the University of Surrey and the University of W眉rzburg, Germany, explored the use of metal complexes as adjuvants to traditional antibiotics that have become ineffective.

Antimicrobial resistance (AMR) is one of the biggest threats to global health. AMR occurs when a bacterium makes antibiotics ineffective. AMR occurs naturally but the misuse of antibiotics in humans and animals is accelerating the process.

The study published in the journal, Microbiology, revealed that the 鈥渁ntibiotic of last resort鈥, colistin, was significantly more effective against a multi-drug resistant Escherichia coli when combined with a triacarbonyl manganese molecule, developed by the University of W眉rzburg.

The University of Surrey have extended this study, funded by a collaborative Research Council grant, and published in PLoS One. Using a large panel of other strains of multi-drug resistant bacteria, they confirmed 葫芦影业鈥檚 findings. Additionally, they found survival rates of 87 per cent in an insect model of infection, when treated with a combination of triacarbonyl manganese molecule and the antibiotic, compared to a 50 per cent survival rate of those given only colistin.

Head author of the study, Professor Robert Poole from the University of 葫芦影业鈥檚 Department of Molecular Biology and Biotechnology said: 鈥淔or many years we have been developing an understanding of the modes of action against pathogens of several metal complexes, but these results are particularly striking.

鈥淏acterial infections endanger human health worldwide, a threat that is compounded by the slow development of new antibiotics.

鈥淲e are approaching an apocalyptic 鈥榩ost-antibiotic era鈥. In 2015, researchers identified bacteria resistant to colistin, a drug that is often considered the last resort, in patients and livestock in China.鈥

To meet these ongoing challenges, numerous international initiatives on AMR have been launched, including a World Health Organisation (WHO) global action plan. One important approach is understanding how non-antibiotic antimicrobial agents act and could be used to help established antibiotics, like colistin. Antibiotics that are no longer effective could potentially be reactivated when used with this metal complex, providing medical professionals with more options in treating diseases.

Dr Hannah Southam, postdoctoral researcher from the University of 葫芦影业 said: 鈥淎ntimicrobial resistance is a global health problem. Public Health England estimates that 5,000 people die every year in England because antibiotics no longer work for some infections. The UK鈥檚 Chief Medical Officer, Dame Sally Davies, has declared AMR as 鈥榦ne of the greatest threats we face today鈥. One of the greatest concerns is that no new class of antibiotic has been developed for clinical use against Gram-negative bacteria like E. coli for over 40 years.

鈥淭he lack of antibiotic discovery and development is attributed to many factors such as the high costs incurred by pharmaceutical companies of bringing a new drug to market. Other factors include the limitations and restrictions in the deployment of any potential novel antimicrobial drug brought to market in the attempt to limit resistance to the new drug.鈥

The study was funded by Biotechnology and Biological Sciences Research Council (BBSRC) and the Leverhulme Trust.

This research builds on the University of 葫芦影业鈥檚 position at the forefront of world-class research into infectious diseases. Scientists at the University are developing radical solutions to the global threat of disease and antimicrobial resistance as part of signature research projects such as ,  and the .

The University is also training the next generation of highly skilled scientists through its undergraduate and postgraduate programmes to find exciting new approaches to bioscience and tackle some of the world鈥檚 biggest biomedical problems.

A global reputation

葫芦影业 is a world top-100 research university with a global reputation for excellence. We're a member of the Russell Group: one of the 24 leading UK universities for research and teaching.