Professor Mike Williamson
School of Biosciences
Personal Chair


+44 114 222 4224
Full contact details
School of Biosciences
Firth Court
Western Bank
葫芦影业
S10 2TN
- Profile
-
My research concentrates on protein structure and function, mainly by means of NMR, and is described in more detail below.
I also teach NMR and protein structure, signalling, membranes and molecular motors, as well as numerical and statistical methods. I was a reviewer for the HEFCE QAA Molecular Biosciences reviews in 1998-2000, and coincidentally led the MBB submission, in which we got 24/24.
I also headed up the departmental Independent Evaluation of Teaching in 2008, which was also highly complimentary of our teaching. I have been involved in a number of University committees, mostly on admissions, finance and personnel.
I was (2009-2011) Chair of the UK ; also (2009-2012) Chair of the Biochemical Society theme panel II (Molecular structure and function); (2009-2013) a member of BBSRC Committee D (Molecules, Cells and Industrial Biotechnology); (2005-2009) secretary of ; and (2018-) a member of Council of the .
I was on sabbatical in Osaka, Japan from September 2008 until September 2009, mainly to write a book, entitled , published by Garland Press in July 2011 and available online and in all good bookshops. Also available in Italian and Japanese translations.
Career history
- 1975-1978 Natural Sciences, Clare College, Cambridge University (I)
- 1978-1981 PhD "Structural Studies on Some Antibiotics", supervised by Dudley Williams
- 1981-1984 Junior Research Fellow, Churchill College, Cambridge
- 1992-1983 SERC/NATO overseas research fellow, ETH Z眉rich, with Kurt W眉thrich
- 1984-1990 Team leader, Bio-NMR, Roche Products Ltd, Welwyn Garden City
- 1990-current University of 葫芦影业 (appointed Professor in 2001)
- 2017-2021 Head of Department of Molecular Biology and Biotechnology
- 1995 Fellow of the Royal Society of Chemistry and chartered chemist
- 1997 Japan Society for the Promotion of Science (JSPS) invitation fellow
- 2001 ScD, University of Cambridge
- 2008-9 Visiting professor, Kinki University, Japan
- 2009 Visiting professor, Osaka University, Japan
- 2015 Special invited professor, Kyoto University, Japan
- Research interests
-
During my PhD I used NMR to look at the structure and interactions of antibiotics mainly related to, still a vital drug in the constant battle against bacterial drug resistance. This led to an interest in the NOE, where I worked first on 1D NOEs, showing that by using a viscous solvent you can make small molecules behave like bigger ones, and determined the definitive structure of vancomycin.
Around this time, W眉thrich was developing 2D NMR as a way of studying proteins, so after my PhD I got a research fellowship to work in his lab, where I was lucky enough to work on the first NMR structure of a globular protein (see his 2002 Nobel Prize lecture).
Since then, I have worked both on NMR methodology and on determination of protein structures by NMR. In methodology, I have worked in four main areas:
- The nuclear Overhauser effect (NOE)
- Chemical shifts in proteins
- Relaxation
- Study of proteins using high pressure
- Publications
-
Show: Featured publications All publications
Featured publications
Journal articles
All publications
Books
Journal articles
Chapters
Conference proceedings papers
Preprints
- Research group
-
My laboratory uses NMR (and other methods where appropriate) to determine the structure and dynamics of proteins in solution and to study their interactions with ligands. In addition we are developing new methods for characterising structures. Further details are in my web page and in the publications list. Recent work includes:
We continue to study protein structures, particularly if this illustrates function. Recent targets include the PLAT domain of human polycystin-1, which we show to recognise phosphatidyl serine and PI4P in the membrane; the protein Mms6, which helps assemble magnetite particles in magnetotactic bacteria; and the Wbl protein (Figure), which uses an Fe-S cluster to sense NO in M. tuberculosis and hence evade host defences.
We have studied how proteins recognize polysaccharides such as starch, cellulose, xylan and peptidoglycan in bacterial cell walls: for example, the LysM module which recognises peptidoglycan and chitin, as found in bacterial and fungal cell walls and invertebrate exoskeletons.
We have been developing new tools; in particular the use of high hydrostatic pressure to stabilise partially unfolded structures, and thus investigate functional conformational change in proteins. We have started looking at Rheo-NMR, to see how proteins align and aggregate in laminar flow.
We collaborate with numerous groups. These include a logstanding collaboration with Tetsuo Asakura on silk structure; a collaboration with Jim Thomas on ruthenium-based complexes that bind B-DNA and quadruplexes; a collaboration with Robert Poole on the so-called Carbon Monoxide Releasing Molecules (CORMs); and a study on how Hofmeister ions stabilise and/or solubilise proteins.
We have a longstanding interest in polyphenols such as those from tea, and in how they interact with the body. As part of this study, we have shown that the main component of green tea, epigallocatechin gallate (EGCG), has the potential to slow down HIV infection; and that EGCG can be transported effectively by binding to albumin in the blood.
- Teaching activities
-
Level 4 modules
- MBB401 Introduction to research methodology
- MBB402 Advanced literature review
- MBB403 Extended laboratory project
Level 3 modules
- MBB334 Biochemical Basis of Human Disease (module coordinator) - amyloid disease, obesity and inflammation
- MBB343 Biochemical Signalling - principles, receptor tyrosine kinases, Notch and NF-kB
- MBB361 Literature review
- BIS303 Research project
Level 2 modules
- BIS206 Biostructures, Energetics and Synthesis 鈥 membranes, nerve transmission and signalling
- BIS220 Ethics and Philosophy for Molecular Biosciences
Level 1 modules
- MBB161 Biochemistry 1 鈥 Orbitals and amino acids
Links