ࡱ> 9 0r?bjbj.. LhLh6+ ||8|3@    'XQ)l)83333333$c69b(3)'@'))(3||  =3---)|8  3-)3--:&2,f2 Dnq*R2 2S303\2 {9q+6{9f2{9f2))-)))))(3(3,6)))3)))){9))))))))) X B:  Programme Details 1. Programme titleStatistics with Financial Mathematics2. Programme codeMAST11, MAST123. QAA FHEQ levelMasters (FHEQ Level 7)4. FacultyScience5. DepartmentSchool of Mathematics and Statistics6. Other departments providing credit bearing modules for the programmeNone7. Accrediting Professional or Statutory BodyRoyal Statistical Society8. Date of production/revisionDecember 2019, July 2020, September 2022 AwardsType of awardDuration9. Final awardMSc1 year (MAST11), 2 years (MAST12)10. Intermediate awards PG DiplomaPG Certificate Programme Codes 11. JACS code(s) Select between one and three codes from the  HYPERLINK "https://www.hesa.ac.uk/support/documentation/jacs/jacs3-principal" \h HESA website.G30012. HECoS code(s) Select between one and three codes from the  HYPERLINK "https://www.hesa.ac.uk/innovation/hecos" \h HECoS vocabulary.100401100406 Programme Delivery 13. Mode of study Full time (MAST11), Part time (MAST12)14. Mode of delivery In person 15. Background to the programme and subject area In recent years a new area of application of probabilistic, statistical and mathematical techniques has emerged in finance, leading to rapid advances in optimal investment, risk management and the pricing of options and derivatives. The new area has seen major development, much of it in the UK, stimulated by the needs of the countrys financial services industry, which is of global as well as national importance. There is a substantial demand for high-quality postgraduate training in this area, including demand for such training in part-time distance-learning form. The MSc in Statistics with Financial Mathematics provides both a practically-based professional training combining statistics and financial mathematics, and a foundation for those wishing to pursue further research. It is available via distance-learning (2-3 years, part-time) as well as by residential study (1 year full-time). The programme is a development of that leading to the MSc in Statistics, which has been running successfully for many years. It builds on the provision of a firm grounding in practical statistical methodology and computation, including the development of the personal skills in demand by employers, from the established Statistics MSc programme, and adds to them development of an understanding of, and ability to apply, the concepts, models and tools of modern mathematical finance. It provides an excellent foundation for a career in financial areas, or for further study for a research degree. The MSc is accredited by the Royal Statistical Society. The Society accords GradStat status with one year's relevant experience towards CStat status to all students who pass the course.The programme is kept in close touch with the needs of employers through the programme's Advisory Board, whose members are drawn from industry, commerce and government. Students benefit from contacts with members of the Board, from meetings with employers through open days, from career presentations and through work on dissertation projects arising from commerce and industry. The School has an international reputation in research, with 96% of research activities being rated as world leading or internationally excellent in the 2021 Research Excellence Framework exercise. Students can be confident that the training offered by the programme is informed by the latest thinking in the subject. Further information is available from the School web site:  HYPERLINK "http://www.sheffield.ac.uk/maths/prospectivepg/taughtpg/statistics" \h http://www.sheffield.ac.uk/maths/prospectivepg/taughtpg/statistics 16. Programme aims MSc Statistics with Financial Mathematics aims to:A1provide a high-quality thorough initial training for professional statisticians with a strong interest in quantitative finance;A2provide an intellectual environment conducive to learning;A3prepare students for careers which use their statistical and financial-mathematical training;A4provide teaching which is informed and inspired by the research and scholarship of the staff;A5provide students with assessments of their achievements, and to identify and support academic excellence. 17. Programme learning outcomes Knowledge and understanding On successful completion of the programme, students will be able to demonstrate knowledge and understanding of:Links to Aim(s)K1statistical theory, including Bayesian and frequentist approaches for statistical inference;1-5K2a wide variety of statistical modelling techniques;1-4K3computational methods for implementing statistical analyses;1, 3-5K4at least one statistical computing language;1, 3K5the application of mathematics and statistics in finance.1-4Skills and other attributes On successful completion of the programme, students will be able to:S1identify and implement an appropriate statistical modelling method, when presented with a data analysis problem;1-3S2produce written reports which describe statistical analyses and present the findings;1-5S3use appropriate software for analysing data, implementing statistical modelling methods, and preparing written reports;1-3, 5S4communicate the results of statistical analyses to non-expert audiences;1, 3, 5S5plan and complete an extended individual study of a statistical problem and to present the results in a dissertation;1-5S6apply suitable mathematical and statistical techniques in problems related to the pricing of financial instruments.1-4 18. Learning and teaching methods Development of the learning outcomes is promoted through the following teaching and learning methods: MAST11 is a full-time residential programme, with lectures, MAST12 is a part-time distance learning programme. They are as closely integrated as possible within the constraints this difference imposes. The distance learning version is designed so that students study the same subjects as their residential counterparts essentially concurrently. Blackboard The course materials are made available through Blackboard and support is available from a designated personal tutor from the individual module lecturers and from the course's Course Director via email or telephone. Most communication within the course, particularly between residential and distance-learning students, takes place via Blackboard and so training in its use is given early in the MSc. For all modules (except the dissertation module) students are provided with module notes, structured problems and a schedule of work. The Blackboard discussion board is the main vehicle for academic interaction. It also serves to keep distance-learning students exactly in step with the delivery of material in «Ӱҵ. (K1-K5). Independent Learning This is the cornerstone of success in the programme. It is vital for the assimilation of the material provided, for the preparation of written reports, and other presentations, and for the proper use of sophisticated software (K1-K5). Lectures A 15-credit lecture-module generally comprises about 20 lectures. In lectures the important points in the lecture notes are explained and illustrated, with computer demonstrations when appropriate. The Blackboard discussion board is used to keep distance-learning students up-to-date with what has been covered and highlight any special points made during lectures. (K1-5, S1, S3, S6). In every module, some lectures will include discussion and demonstration of presenting statistical concepts to non-expert audiences (S4). Computing classes A number of classes are held in computer labs, where students can learn and practise statistical computing. Demonstrators are available in the classes to help students with any questions or problems (K3, K4, S3). Formative assessment All modules (with the exception of the dissertation module) include sets of non-assessed exercises. Students can hand in their work and receive feedback on their solutions. Model solutions are provided for these exercises (K1, K2, S1, S6). Project work and feedback Students will complete a number of projects over the MSc, and will receive feedback on both technical aspects particular to the project, and presentation themes that are common to all projects (S1-S4). Dissertation Teaching for the dissertation is through supervision by one or more members of School staff. Students will experience the key phases of a relatively large piece of work: planning to a deadline; researching background information; acquisition and validation of data; problem specification; carrying out of relevant analyses; and reporting at length through the dissertation. Dissertation topics may be provided by external clients, and learning to communicate with, and relate to, these clients is an extra benefit of the dissertation; for distance learning students, projects based in the workplace in co-operation with an employer are encouraged. (K1-K5, S4-S6). Personal Tutorials The Department runs a personal tutorial system conforming to the guidelines in the Universitys Students Charter. The system is essentially pastoral; tutors are available to provide personal support and general academic guidance. 19. Assessment and feedback methods Project work, requiring report-writing and statistical computing K1-K4, S1-S4. Examinations, which are held in May/June, K1-K3, K5, S1, S6. Dissertation K1-K5, S1, S3-S6. 20. Programme structure and student development All students must take 120 credits of theoretical modules, taken from statistics, data science, machine learning, and financial mathematics, and then complete a Dissertation (60 credits). For residential students the dissertation is mainly prepared during the summer. The arrangement for part-time students is more flexible but it is expected that they too will do most of the work during the summers or in the year after they have completed all the other modules. Successful completion of the programme leads to the award of the MSc with either pass, pass with merit or pass with distinction grade. Some modules form a statistical core, and will equip students with essential modelling, computational and professional skills. These will include linear and generalised linear modelling, exploratory data analysis and statistical computing using R, Bayesian inference and Monte Carlo methods, and presentation skills. Students will have the knowledge and confidence to tackle a wide range of data analysis problems, and, when confronted with non-standard problems, make use of computational methods and/or simple exploratory approaches as appropriate. There are specialised modules which introduce various concepts from finance (in particular, the pricing of financial derivatives), together with appropriate mathematical and statistical tools, and students will learn how to apply mathematical and statistical ideas in the financial domain. Finally, students may develop more specialised statistical knowledge in modules on machine learning and time series, in particular learning further techniques that can be applied to finance. The dissertation draws on the knowledge and skills acquired in the remainder of the programme. The dissertation will be on a financial topic, enabling students to consolidate their knowledge, and do further independent study at the interface of mathematics/statistics and finance.Detailed information about the structure of programmes, regulations concerning assessment and progression and descriptions of individual modules are published in the University Calendar available online at  HYPERLINK "http://www.sheffield.ac.uk/calendar/" \h http://www.sheffield.ac.uk/calendar/. 21. Criteria for admission to the programme The minimum entrance requirement for the course is: Either a 2.1 Honours Degree, from a three or four year course at a UK university, with substantial mathematical and statistical components; or any comparable qualification of equivalent standard. In addition, students whose first language is not English will need to demonstrate English language proficiency (even if their education has been chiefly in English). Our usual minimum requirements are: TOEFL 232 (computer-based) or 575 (paper-based), IELTS 6.5, or equivalent. Detailed information regarding admission to the programme is available at  HYPERLINK "http://www.shef.ac.uk/study/" \h http://www.shef.ac.uk/study/Detailed information regarding admission to programmes is available from the Universitys On-Line Prospectus at  HYPERLINK "http://www.shef.ac.uk/courses/" \h http://www.shef.ac.uk/courses/. 22. Reference points The learning outcomes have been developed to reflect the following points of reference: Subject Benchmark Statements  HYPERLINK "https://www.qaa.ac.uk/quality-code/subject-benchmark-statements" https://www.qaa.ac.uk/quality-code/subject-benchmark-statements Framework for Higher Education Qualifications (2014)  HYPERLINK "https://www.qaa.ac.uk/docs/qaa/quality-code/qualifications-frameworks.pdf" https://www.qaa.ac.uk/docs/qaa/quality-code/qualifications-frameworks.pdf University Strategic Plan  HYPERLINK "http://www.sheffield.ac.uk/strategicplan" http://www.sheffield.ac.uk/strategicplan Learning and Teaching Strategy (2016-21)  HYPERLINK "/polopoly_fs/1.661828!/file/FinalStrategy.pdf" /polopoly_fs/1.661828!/file/FinalStrategy.pdf 23. Additional information   This specification represents a concise statement about the main features of the programme and should be considered alongside other sources of information provided by the teaching department(s) and the University. In addition to programme specific information, further information about studying at «Ӱҵ can be accessed via our Student Services web site at  HYPERLINK "http://www.shef.ac.uk/ssid" \h http://www.shef.ac.uk/ssid.     mast11 ver23-24 PAGE1 Programme Specification A statement of the knowledge, understanding and skills that underpin a taught programme of study leading to an award from «Ӱҵ  -.=>STUfguvw 0 1 5 6 7 : d e ~  ĹϟĹĹĹĹĹĹh&hVEB*CJaJphh&h{CJaJh&h.b4CJaJh&hVECJaJh&h4SCJaJh&hVE5>*h&h4S5>*hVEjhRUmHnHu; .T $Ifgd&$1$gd&$a$gd4S$<a$ TUgvobY $Ifgd& (($Ifgd&kd$$Ifs0 <(   t 0n(4d4 saApytRvwof[ $1$Ifgd& $Ifgd&kd$$Ifs0 <(   t 0n(4d4 saApytRoff $Ifgd&kd$$Ifs0 <(   t 0n(4d4 saApytRoff $Ifgd&kdL$$Ifs0 <(   t 0n(4d4 saApytR1 6 of[ $1$Ifgd& $Ifgd&kd$$Ifs0 <(   t 0n(4d4 saApytR6 7 e  obW $1$Ifgd& (($Ifgd&kd$$Ifs0 <(   t 0n(4d4 saApytR obW $1$Ifgd& (($Ifgd&kd$$Ifs0 <(   t 0n(4d4 saApytR oi^^^ $$Ifgd&$gd&kd\$$Ifs0 <(   t 0n(4d4 saApytR    # 6 7 8 : ; B C D E F H I T U V W X g h x y ȾȴڪȾȴڪځrgrh&hCJaJjh&hCJUaJh&h4S6CJaJh&h4SCJaJh&hVE5h&h4S5>*h&hVE5>*h&hVE>*\h&h&>*\h&h.b4>*\h&h.b4>*h&hVECJaJh&hVE>*h&hVE6>*h&h4S>*(  QFFF $$Ifgd&kd $$IfdF P(   t0n(    4daFpytR  7 8 C D ]RRRR $$Ifgd&kd$$IfdF P(   t 0n(    4daFpytRD E F U V ZOOO $$Ifgd&kd$$Ifd4F P(`   t 0n(    4daFpytRV W X h y  ZTLCCC $Ifgd&$<gd&$gd&kd$$Ifd4F P(    t 0n(    4daFpytR        ! " # N O   ʿʿwmch&hVE5>*h&h4S5>*h&hVE5CJaJh&hCJaJjh&hCJUaJh&h4S6CJaJh&h4SCJaJh&hVECJaJh&h.b4CJaJh&hVE6CJaJ,jh&h6>*B*CJUaJphU#h&h4S6>*B*CJaJphU&    " 4+ $Ifgd&kd $$Ifs\8"(FsU  t 0(4d4 sa_p(ytR $1$Ifgd&" $1$Ifgd& $Ifgd& ?93* $Ifgd&$gd&1$gd&kd $$Ifs\8"(FsU  t 0(4d4 sa_p(ytR    ckdt $$Ifs0 ( k  t 0#(2 s4d4 saPpytR $Ifgd&      L M M MMMM&'MMMM()LkååÖzz h&h.b4>*B*CJaJphh&hCJaJjh&hCJUaJh&h{B*CJaJphh&h{B* CJaJphPh&h.b4B*CJaJphh&h4S5CJaJh&hVE5CJaJh&h.b4CJaJh&hVECJaJ/   M ldd03$$d%d&d'd(dIfNOPQRgd&$a$gd&kdK $$Ifs0 ( k  t 0#(2 s4d4 saPpytR'mn%mkd" $$Ifd^'' t0'2d4dap ytR7x$$d%d&d'd(d1$IfNOPQRgd&5x$$d%d&d'd(dIfNOPQRgd&klmno89:<=Hwxy{|;<=?@ӼӗӗӗӗӗӎǂӦh&hVE6CJaJh&5CJaJh&h.b4B*CJaJphh&h4SCJaJh&h{CJaJh&h.b4CJaJh&h4S5CJaJh&hVE5CJaJh&hVECJaJ)jh&h>*B*CJUaJph3no9{pp $1$Ifgd&skd $$IfsX'Q'  0Q'4d4 sazp ytR $Ifgd&$a$gd&9:=xtii $1$Ifgd&kdi$$Ifs0PX'I%  0Q'4d4 sazpytRxy|tii $1$Ifgd&kd1$$Ifs0PX'I%  0Q'4d4 sazpytR<ti53$$d%d&d'd(dIfNOPQRgd& $1$Ifgd&kd$$Ifs0PX'I%  0Q'4d4 sazpytR<=@tii $1$Ifgd&kd$$Ifs0PX'I%  0Q'4d4 sazpytRYtnh]P P$1$Ifgd& $1$Ifgd&1$gdhj]1$gd&kd$$Ifs0PX'I%  0Q'4d4 sazpytR-XYZ[jklno    *LMNSTUWX-./12ƻƻƻƻƻƻƻƻƻh +,CJaJh&h.b4CJaJh&h.b45CJaJh&h4S5CJaJh&hVECJaJh&hVE5CJaJh&h4SCJaJFYZ[k $1$Ifgd&ukdQ$$IfsJ'3'  03'4d4 sap ytRklonccc $1$Ifgd&kd$$Ifs0!J'!U 03'4d4 sapytR \QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytR  MT\QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytRTUX\QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytR\QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytR.\QD P$1$Ifgd& $1$Ifgd&kd_$$IfsF}!J'fxU  03'    4d4 sapytR./2 $1$Ifgd&ukd?$$IfsJ'3'  03'4d4 sap ytR\SHH $1$Ifgd& $Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytR 0&=VWXZ[\^_,8`a,/ , / !,!/!T!ĸ h&hVE5B*CJaJphh&h4S5CJaJ h&h4S5B*CJaJphh&hVE6CJaJh&h.b45CJaJh&h.b4CJaJh +,CJaJB \QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytR\QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytRW[\QQQ $1$Ifgd&kd$$IfsF}!J'fxU  03'    4d4 sapytR[\_\QQQ $1$Ifgd&kds$$IfsF}!J'fxU  03'    4d4 sapytR\V9$ @ $d%d&d'd(dNOPQRgdhj]1$gd&kdS$$IfsF}!J'fxU  03'    4d4 sapytRaU!""##%%&&''(( x$Ifgd& $Ifgd&$x$If]a$gd&$x($If]a$gd&$$If]a$gd& x$Ifgd&$x$If]a$gd& x$Ifgd&T!U!","/"""""#,#/#####$,$/$%,%/%%%%%&,&/&&&&&&',''''''(,((((((),))*,**+)+*+,+<+=++,#,$,%,&,,,I,J,÷h&hVE5CJaJh&h4S5CJaJh&hVECJaJh&hVEB*CJaJphh&h.b45CJaJh&h.b4CJaJD(*+=+$,%,&,J,ID?gdhj]gd&jkd3$$IfH'`'0`'44 Hap ytR7xx$$d%d&d'd(dIfNOPQRgdhj] x$Ifgd& $Ifgd&J,,,,,,,,,,,,,,--&-'-,-=----.. .,.=.../,/=////0,0=01,1=11112,2=22Ͼ||||||h&h.b4B*CJaJphh&hm:CJaJh&h.b4CJaJ h&hVE5B*CJaJphh&h4S5CJaJ h&h4S5B*CJaJphh&hVECJ\aJh&hVECJaJh&hVEB*CJaJphh&hxrCJaJ0J,,,,,Ojkd$$IfH'`'0`'44 Hap ytR7xx$$d%d&d'd(dIfNOPQRgdhj]$x$Ifa$gd&,,'--./1t<t7x<$$d%d&d'd(dIfNOPQRgd+ x$Ifgd&$x$Ifa$gd&9$ @ $d%d&d'd(dNOPQRgdhj]9$ @ $d%d&d'd(dNOPQRgd&2222233,3=3F3^3e3334,4444445,545y5z5555555555ŶvjY h&h4S5B*CJaJphh&hVECJ\aJh&hVEB*CJaJph)jh&h>*B*CJUaJph h&h4S>*B*CJaJphh&hCJaJjh&hCJUaJh&h4SB*CJaJphh&hVECJaJh&h6CJaJh&hm:CJaJh&hxrCJaJ!12344Rjkd7$$IfH'`'0`'44 Hap ytR7xx$$d%d&d'd(dIfNOPQRgdhj] x$Ifgd&4555]$9$ @ $d%d&d'd(dNOPQRgd&jkd$$IfH'`'0`'44 Hap ytR7xx$$d%d&d'd(dIfNOPQRgd&55666 66,68696:6?6B6E6666667 7 77,78888,8]8^88888999ƷƷƬƷƬƷƷu`)jh&h>*B*CJUaJph h&hxr>*B*CJaJphh&hCJaJjh&hCJUaJh&hxr5CJaJh&h6CJaJh&hxrB*CJaJphh&hxrCJaJ h&hVE5B*CJaJph h&h4S5B*CJaJphh&h4S5CJaJ%569668k97xx$$d%d&d'd(dIfNOPQRgdhj] x$Ifgd&9$ @ $d%d&d'd(dNOPQRgdhj]9,9I9J9h9i9j9k9l9m999999999:,:E:F::::::::;;;,;^;_;wwjYwwwwjjY!jh&h0J#CJUaJh&hm,0J#CJaJh&hm,CJaJh&hVE5CJaJh&h4S5CJaJh&hVECJ\aJh&hVECJaJh&hxrB*CJaJph)jh&h>*B*CJUaJph h&hxr>*B*CJaJphjh&hCJUaJh&hCJaJ"k9l9m999\M8$ @ x$Ifgd&$ @ gdhj]9$ @ $d%d&d'd(dNOPQRgd&jkd] $$IfH'`'0`'44 Hap ytR99::`;z;;<<<dskd $$IfH'`'0`'22 H44 Hap ytR @ x$Ifgd& @ x$Ifgd& _;`;y;z;{;;;;;;;<<<<,<\<]<<<<<<<<<<<<<<<ννvgXj "h&hCJUaJh&hVEB*CJaJph h&hVE5B*CJaJph h&h4S5B*CJaJphhhj]5B*CJaJphh&hVECJ\aJh&hVECJaJ!jh&h0J#CJUaJh&hm,0J#CJaJh&hCJaJjh&hCJUaJh&hm,CJaJ<<<<U7xx$$d%d&d'd(dIfNOPQRgd&9$ @ $d%d&d'd(dNOPQRgdhj]9$ @ $d%d&d'd(dNOPQRgd&<<<<<>t xx$Ifgdhj]$ @ gdhj]gd&jkd!$$IfH'`'0`'44 Hap ytR<<<=,=-==>,>->G>H>s>t>>>>>>>>>>>>>>>>>>>>>>>>>>>>ʵzznzhm,B*CJaJphh&B*CJaJphh4SB*CJaJphhhVEB*phhujhuUh&hVECJaJ)jh&h>*B*CJUaJph h&h4S>*B*CJaJphh&hCJaJjh&hCJUaJh&h4SCJaJ(>>>>>>>>>>>gd&jkd"$$IfH'`'    0`'44 Hap ytR >>>>>>>>?$<:Da$ $<<:Da$4$ 9r $d%d&d'd(dNOPQRa$1 9r $d%d&d'd(dNOPQR4$ 9r $d%d&d'd(dNOPQRa$>>>>>>>>>>>??,?????????????ͦ&V䴳45B*䴳V45B*䴳лV*q'*Ա4*4*????????&:<<:D$<:Da$50P. A!`"`#@$% DpnL r;=ouk!XcPNG  IHDR1tbIDATxoyo9,B( 4ot]/@#gH)//yS`.{kAVQeX}HaHKh;iݠ{(iwgof3}xY:Kg,tY:Kg,tY:Kg,tY:Kg,tY:Kgiɬ;NޛSd'JcuT&UT'?э舞tcJ.S;s3_8'MY:PhNqr'*9YDr(3?3*܏ԽaEr++3 ?SU:R0wԤhvf;b8c :L;oxrz&(b:cxͥo_ 蔋)u;UR{,{vԔ}XmUT6\8:Xϳ&aEtrv*:=n5NwTZ99G=UWԁq׹8(\Ϡt>gεkӜH{`c 743h3 6}M_ܶANCΩDL\ nt5QPӍʙOy;}ayrS;n_Qo'%ΝB:C]%gvröy D6:ޙNK9%gr?"g[@Eg;E+g9ܜdB:DR+g\a^xGZ8/3;SQ>y]LL/QHq*Ύ^pJ[7|:Q0s=aOd7{N9Nhd.X Ǻ3>SWǓ= Y|mnń, uu?ӝ8W,xC)r2}C>AMtB{IOǯ=EwW"ֆwӝqgxqsޱŒB +8qZJ2jr?h%,s*}s+3BEtyU wT~|w<#~A+>Lo-s*P4qZxN2uO$KDNS +ppG'PeKWNJYbhΣs '@R0Y̹wsyVcWx)3,[@;46Y4Ow;c .,S\ >TDʉ5o10}k-Z9UI*~7Ou xn;sgP'N.'K+֐sOq:4g<(2w~Rq>2NWq;lkKɔW9c}N ]Ѿ.;/shpZ;"}^S9+ ˹.gHi7&7zs#Sgnas6Se2@3pil|ʉӧwӜG,Sgt4k'Ħ]4)l]Fq[(oق,i|1s:(Ā ;×|S:Sik8g_͙rbk rv'EGqFŒt9pUߖhE`X@_F`~9KKyeQ~A8#k9; Ixm;Cd8P' >9}r&-}*pChlNڹF#~FuW ~Czqg(6(&I)KxT/qi?tqM}8+B;Ct*^ VEm'Y9uB]t)rj9i1:9p`>tr#~Zαb]N_1K r2 ܢ?йj~v♰3sһNGr)gh N,cߝ(%Zigtv0N;oN<Ӕ8ddOwx7N cȹN>q2]7B.Oq:$_'6.Bq _fƙ?Pw**ǛgȕTmG4~'Eq @QVV`z 9B0Tx:3ֻG HyFai*s'O9%('NwE~bҰ$H9֔3Ki~4R$dl%WJ9~g?J-*S2ui]P'_N9{0 t;SAs9fhr J8=NNf Viw::б3sb1ogM8Y 8x +ySY:Cpd;'ؘ̜)iΊC}'9w8!3gфwRpL !0C[Rϙ4x3P9ĩ~|2CZ G3;qz*8t]*-T(CUUXB$VA4 Zfz[tY4N*nfDxt1 T# TņC ^3?/K{e >SNݣгht9\3/`ShnFP T2ҫz;֧6K* 9:J3bZznA:TNh:O'91  c5G'jVmG2Ut9=J:sqvtku|Nl<2OJ7cɫYXN=6W[qM8,Oo!"tکj^h%&hC;C_L*;@0] ۤR4suzRh!\4Ӣ)7N .cfdj'7(Hy|8qKxS$ /[3sqR!9_tVL c8|,u $5^K_unԺL:it1OAaz U(ݛSeQ i; f>׎ 菴˭?N(s%q CĢbTao9Mv}9R&$\R' L,#&ᒢޱ].s9rn%p/*/9.t zl`Aj:GLLR'/tQ@S;'axl1)G:`zkq^0iˇɄ 8koВSI`2:M7iGb9i0EwW6VA>|gצtv*oYq[fNioo'mu';buIsuzBpq>׌eǭdTN="*gPc-gQC[.Q\8,ӕH/wvw7lV{q8W`H: / 3N։SZ99L{V̂*~KYe!cv*iiĮN3djꎥ{m]ATr.Θ N#ddĖNZc=4 n/?nJwj{f ;}ۤyZ?ǹ>Z!ʦ8n(,r5ܖ⭰QzĿ=;E"',70]ڷ:եxǥ!<;~{Zv0n;{Nu+ZE7՗? Z'-YD}gq/Z'خi֣/;N\9/Gf]|Vm;Wos^ucsX3+[MhzD^jlCKchj= ȣZ*s/^p f/)T{;nVsI-Sڏ~ICHZ}aM6:!bSEӇP=Rf; f *Gn7}9u4݅] T5gwk^?ټf;;3w~CS}rb8lQ>5>#dd)ܦ au]?'!p tM{\g9TjV'֌t]` l*Fc艕zP]N3=aNqkӝFഛtJJU5}I+s?vb?#pN(lܶ~Z 9;o~qNvƜ]w hiR%d WH=TXO:cptN*YORD#Dsܧ=^U@݊_\NK43'DfЫJ{MZ Mɸ[ϏĐalcG5z=axlP$4s-<ğֿF)bq~һ!OդMk3\+b !|0L}ތldN T-twhާ0v|'#m-suJx(h:w\nGEpb+Q:[o>J-0ȡ$̍MFi7ߠj䤮32 Hhi618ۧfqR?-9މ$i14E8c}d@}=o:CN]}S+[c{Nݻ0d7w*+Ԃ*SU+#|Y:Kg,tY:Kg,tY:Kg,tY:Kg,tY:Kg,tY: |72\7{IENDB`$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfA!vh#v #v:V s  t 0n(5 54d4 saApytR$$IfF!vh#v #v#v :V d  t0n(5 55 4daFpytR$$IfF!vh#v #v#v :V d  t 0n(5 55 4daFpytR$$IfF!vh#v #v#v :V d4  t 0n(+5 55 4daFpytR$$IfF!vh#v #v#v :V d4  t 0n(+5 55 4daFpytR$$If_!vh#v#vF#vs#vU:V s  t 0(55F5s5U4d4 sa_p(ytR$$If_!vh#v#vF#vs#vU:V s  t 0(55F5s5U4d4 sa_p(ytR$$IfP!vh#v #vk:V s  t 0#(5 5k/ 2 s4d4 saPpytR$$IfP!vh#v #vk:V s  t 0#(5 5k/ 2 s4d4 saPpytR$$If!vh#v':V d t0'5'2d4dp ytR$$Ifz!vh#vQ':V s  0Q',5Q'/ 4d4 sazp ytR$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpytR$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpytR$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpytR$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpytR$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpytR$$If!vh#v3':V s  03'53'/ 4d4 sap ytR$$If!vh#v!#vU:V s 03',5!5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#v3':V s  03'53'/ 4d4 sap ytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapytR$$If!vh#v`':V H0`'5`'4 Hp ytR$$If!vh#v`':V H0`'5`'4 Hp ytR$$If!vh#v`':V H0`'5`'/ 4 Hp ytR$$If!vh#v`':V H0`',5`'/ 4 Hp ytR$$If!vh#v`':V H0`',5`'4 Hp ytR$$If!vh#v`':V H0`'5`'/ 22 H4 Hp ytR$$If!vh#v`':V H0`'5`'4 Hp ytRDdP  3 3"(($$If!vh#v`':V H0`',5`'/  4 Hp ytR"&x666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666p62&6FVfv2(&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@66666$OJPJQJ^J_HmH nHsH tH<`< Normal_HmH nHsH tH<@< Heading 1$@&CJ aJ << Heading 2$@&CJaJ@@@ Heading 3$@& >*CJaJ@@ Heading 4$@& 5CJaJ88 Heading 5$@&5@@ Heading 6$@& 6CJaJDA D Default Paragraph FontRi@R 0 Table Normal4 l4a (k ( 0No List @>@ Title$$x 5CJHaJH^J^ Subtitle$$hP$6B*CJ0OJPJQJ^JaJ0phfff:: :V4d4 s442#2 :V4d44:3: :V4d4 s44:C: :V4d4 s442S2 :V4d44:c: :V4d4 s44:s: :V4d4 s4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4444  m,0Header B#.. m,0 Header Char4 4 "m,0Footer !B#.!. !m,0 Footer Char6U`16 m,0 Hyperlink >*B*phT/AT m,0Unresolved Mention1B*ph`^\q @ R@hj]0Revision%_HmH nHsH tHPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vj\{cp/IDg6wZ0s=Dĵw %;r,qlEآyDQ"Q,=c8B,!gxMD&铁M./SAe^QשF½|SˌDإbj|E7C<bʼNpr8fnߧFrI.{1fVԅ$21(t}kJV1/ ÚQL×07#]fVIhcMZ6/Hߏ bW`Gv Ts'BCt!LQ#JxݴyJ] C:= ċ(tRQ;^e1/-/A_Y)^6(p[_&N}njzb\->;nVb*.7p]M|MMM# ud9c47=iV7̪~㦓ødfÕ 5j z'^9J{rJЃ3Ax| FU9…i3Q/B)LʾRPx)04N O'> agYeHj*kblC=hPW!alfpX OAXl:XVZbr Zy4Sw3?WӊhPxzSq]y r7r7- ***-  kT!J,259_;<>r? */47>HOQTWY\_bTv6   D V "  n9x<Yk T.[(J,,145k99<<>>??!"#$%&'()+,-.01235689:;<=?@ABCDEFGIJKLMNPRSUVXZ[]^`acN (ky---]0001I1h11E2223^3z3334\44G6s66r7XXXXXXXXXXX %'-!,b$L r;=ouk!Xc7H# @(    FA?"image2.png#" ?  T!e!e"Rectangle 13"D2?PK!8[Content_Types].xmlAN0EH%N@%邴K@`dOdlyLhoDX3'AL:*/@X*eRp208J妾)G,R}Q)=HiҺ0BL):T뢸WQDY;d]6O&8* VCLj"󃒝 yJ.;[wIC_ :{IOA !>Ø4 p;fɑ3׶Vc.ӵn(&poPK!8! _rels/.relsj0 }qN/k؊c[F232zQLZ%R6zPT]( LJ[ۑ̱j,Z˫fLV:*f"N.]m@= 7LuP[i?T;GI4Ew=}3b9`5YCƵkρؖ9#ۄo~e?zrPK!xdrs/e2oDoc.xmlS0#4IՅ6jB*BZApfmҿg얶 3{3^?NeGhkx5+9SNθ}ÿ۾[rQNXTO j5FEchxce30H.H[}1zxi\_k%WQEfNb^!mZZ{7CAG^K=(_#q&PxT?ؼ"̅p _Yv@2k$34 Oؔ:]RSd6rU8\d9?)?d4Y$q|HWRꯔtzk6;o,mEG~K.%;iIV°i "0P+F㏃řHUǘÇ#}D8{|y?&OP.`e9`6?PK!+S drs/downrev.xmlLAK0!M\j֦,xĪ1mƶl3)MڭٓfxbA,8ޓۍxS&!kOˋ֟*C(FCK ?"'g"S+dNU*:3XNð㳾ʪ"pgt(3  D )lm& BPPK-!8[Content_Types].xmlPK-!8! /_rels/.relsPK-!x.drs/e2oDoc.xmlPK-!+S drs/downrev.xmlPK) B S  ?r7_]t T _oh24j9m5t41r _e2oo9u3do1pa _13ts2med3l67 _b0vxn133qzz1 _ocojx61y4kxu _iv4xf5k0fl38 _uyu3aj387fji _lc8exw96pwz8 _hvwyd8lmz8n _lfuzsza96zo_gjdgxs _k6br1mrerhz5_30j0zll EUWX*#..4s7 EUWX*#..4s7s { 66666666666p7s7 _ e &'].o.66666666666p7s7333333333333:;HIll MSWZz'z'4444446666666666s7:;HIll MSWZz'z'4444446666666666s71X$ IQIh^h`.^`OJPJQJ^Jop^p`OJ PJ QJ ^J %@ ^@ `OJ PJ QJ ^J %^`OJPJQJ^Jo^`OJ PJ QJ ^J %^`OJ PJ QJ ^J %^`OJPJQJ^JoP^P`OJ PJ QJ ^J %^`>*.^`>*.p^p`>*.@ ^@ `>*.^`>*.^`>*.^`>*.^`>*.P^P`>*.1X$IQ :q'VV( +,m,.b4m:VE4SUhj]gehxraxRA6}3u{E.+6?&966@ z'z'z'z'r7@Unknown G.[x Times New Roman5Symbol3. .[x Arial7GeorgiaW,|8DengXian LightI{~ LightC.,.{$ Calibri Light? |8DengXianI{~7..{$ Calibri?= .Cx Courier New[Noto Sans SymbolsCalibriA$BCambria Math"qh''%n.c?/d!`@20x6)7C@P $PVE2! xx8 Claire AllisonClaire Allison  Oh+'0d   , 8DLT\Claire AllisonNormalClaire Allison2Microsoft Office Word@F#@q@q%n. ՜.+,D՜.+,D hp  «Ӱҵcx6  Title 8@ _PID_HLINKSAB`=http://www.shef.ac.uk/ssidiKIhttps://www.sheffield.ac.uk/polopoly_fs/1.661828!/file/FinalStrategy.pdfD )http://www.sheffield.ac.uk/strategicplanBJhttps://www.qaa.ac.uk/docs/qaa/quality-code/qualifications-frameworks.pdf:|@https://www.qaa.ac.uk/quality-code/subject-benchmark-statementsl}http://www.shef.ac.uk/courses/ http://www.shef.ac.uk/study/^Q %http://www.sheffield.ac.uk/calendar/*,Chttp://www.sheffield.ac.uk/maths/prospectivepg/taughtpg/statistics '(https://www.hesa.ac.uk/innovation/hecos Bhttps://www.hesa.ac.uk/support/documentation/jacs/jacs3-principal  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqstuvwxyz{|}~Root Entry FཤqData r;#1Table9WordDocumentSummaryInformation(DocumentSummaryInformation8CompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q