ࡱ> 9 05bjbj.. LhLh,+008t@t1Dl  [)$*\*00000000$`36b0 +)@[) + +000 0/// +08  0/ +0//h/ q+/0001/x6,x6//x60 + +/ + + + + +00A. + + +1 + + + +x6 + + + + + + + + +X :  Programme Details 1. Programme titleMathematics2. Programme codeMAST303. QAA FHEQ level7 (Masters)4. FacultyScience5. DepartmentSchool of Mathematics and Statistics6. Other departments providing credit bearing modules for the programmeNone7. Accrediting Professional or Statutory BodyNot applicable8. Date of production/revisionMarch 2011, March 2012, March 2016, September 2022 AwardsType of awardDuration9. Final awardMSc12 months10. Intermediate awards PG Diploma12 monthsPG Certificate12 months Programme Codes 11. JACS code(s) Select between one and three codes from the  HYPERLINK "https://www.hesa.ac.uk/support/documentation/jacs/jacs3-principal" \h HESA website.G10012. HECoS code(s) Select between one and three codes from the  HYPERLINK "https://www.hesa.ac.uk/innovation/hecos" \h HECoS vocabulary.100403 Programme Delivery 13. Mode of study Full-time14. Mode of delivery In person 15. Background to the programme and subject area Mathematics involves the study of intangible objects (such as numbers, functions, equations and spaces) which necessarily arise in our attempts to describe and analyse the world about us. It is a fascinating subject of great beauty and power. Its abstraction and universality lie behind its huge range of applications, to physical and biological sciences, engineering, finance, economics, secure internet transactions, reliable data transmission, medical imaging and pharmaceutical trials, to name a few. Mathematicians were responsible for the invention of modern computers, which in turn have had a great impact on mathematics and its applications. Teaching in the School of Mathematics and Statistics (SoMaS) is shared between specialist staff in each of Pure Mathematics, Applied Mathematics, and Probability and Statistics. There are specialist MSc programmes in Statistics, and this general MSc is based on options mainly in Pure and Applied Mathematics. Pure mathematics is a subject rich in patterns and one in which the development of a theory may begin with identification of behaviour common to various simple situations and proceed, through precise analysis, to the point where rigorous general results are obtained. Solutions of particular problems may involve standard analytical techniques, for example from calculus, or the application of an abstract general theory to a particular concrete example. In applied mathematics and in probability and statistics, a common approach to practical problems, from a wide variety of contexts, is to first model or interpret them mathematically and then apply mathematical or statistical methods to find a solution. In all three areas it is vital that work should be presented in a clear, precise and logical way so that it can be understood by others. For these reasons, graduates from programmes involving mathematics are highly regarded, by a wide range of employers, for their analytical, problem-solving and communication skills as much as for their knowledge of mathematics. Staff in all three areas have international reputations in research, with 96% of research activities being rated as world leading or internationally excellent in the 2021 Research Excellence Framework exercise. Many modules are taught by leading experts in the area in which the module is based. In Pure Mathematics there are particular research strengths in topology, algebra and algebraic geometry, and number theory, and there are modules available in all these areas. Applied Mathematics research is strong not only in traditional areas of the subject, such as fluid mechanics, but in interdisciplinary areas such as solar physics, particle astrophysics, environmental dynamics and mathematical biology. The School was instrumental, with other departments in the University, in setting up the «Ӱҵ-based NERC Earth Observation Centre of Excellence for Terrestrial Carbon Dynamics. Further information is available from the school web site:  HYPERLINK "http://www.shef.ac.uk/maths" http://www.shef.ac.uk/maths Students will be attracted to this course upon the successful completion of a BSc Mathematics degree, in preference to pursuing an MMath Mathematics qualification, or may come to it from outside «Ӱҵ with an appropriate qualification. 16. Programme aims MSc Mathematics aims to:A1provide students with internal choice to accommodate the diversity of students interests where students may choose either to study a range of Applied and Pure Mathematics or specialise in either mathematical discipline at Masters level;A2provide an intellectual environment conducive to learning; A3prepare students for careers which use their mathematical (and or statistical training as appropriate), including further research;A4provide teaching which is informed and inspired by the research and scholarship of the staff;A5provide students with assessments of their achievements over a range of mathematical (and or statistical skills as appropriate), and to identify and support academic excellence. 17. Programme learning outcomes Knowledge and understanding On successful completion of the programme, students will be able to demonstrate knowledge and understanding of:Links to Aim(s)K1have acquired a specialised knowledge and understanding of at least one of Pure Mathematics and Applied Mathematics;1-5K2have acquired a detailed knowledge and understanding of specialist mathematical topics.1-4Skills and other attributes On successful completion of the programme, students will be able to:S1apply core concepts and principles in well-defined contexts;2-5S2show judgement in the selection and application of mathematical tools and techniques;2-5S3demonstrate skill in comprehending problems and abstracting the essentials of problems;2-5S4formulate problems mathematically;2-5S5obtain solutions of problems by appropriate methods.2-5 18. Learning and teaching methods Lectures A 15-credit lecture-module generally comprises about 20 lectures, but some material may be covered by directed reading. In lectures the important points in the lecture notes are explained and illustrated, with computer demonstrations when appropriate. Project and Assignment work All modules require some practical work, requiring the integration of theory with practical skills. Dissertation Teaching for the dissertation is through supervision by one or more members of School staff. Students will experience the key phases of a relatively large piece of work: planning to a deadline; researching background information; acquisition and validation of data; problem specification; carrying out of relevant analyses; and reporting, both at length through the dissertation and in summary through a presentation. Personal Tutorials The School runs a personal tutorial system, which is essentially pastoral: tutors are available to provide personal support and general academic guidance. Independent learning This is the cornerstone of success in the programme. It is vital for the assimilation of the material provided, for the preparation of written reports, and other presentations, and for the proper use of sophisticated software. Problems Students are required to submit work on specified problems for marking at regular intervals. 19. Assessment and feedback methods The principal method of summative assessment for the taught modules is through examinations, held in two periods at the end of the first and second semesters. The summative assessment for the project module, is a final dissertation of 10-20,000 words which is supported formatively by regular one to one meetings with the supervisor, where feedback and direction is given. There are also a few optional modules with a continuous assessment elements, such as assignments. The provision of feedback through formative assessment varies between modules, according to learning outcomes. For example, some modules use problems classes to work through formative problems, where appropriate. Others use weekly marked homeworks, based on a set of structured problem sheets that align with the lecture material. 20. Programme structure and student development This full-time course is offered over 12 months from September and finishing in the following September. The components must be completed over both Semesters and the dissertation must be completed before the end of the summer. All students take modules, drawn from a prescribed list to give a total of 180 credits (120 credits from 15- and 30-credit modules and a dissertation of 60 credits). Successful completion of the programme leads to the award of the MSc with either pass, pass with merit or pass with distinction grade. Depending upon students choices for specialism, students are exposed to a myriad of skills with specific skills where appropriate according to the individual students specialism. This could include training in the professional skills of tackling substantial projects and presentation of results; the preparing and writing of intelligible reports; in practical examples or data handling enhancing knowledge regarding underlying theory and computational tools. Students extend their skills for general professional development, including the use of other forms of presentation; group working; the illustration of the interpersonal skills involved in a career in mathematics, teaching and further research study.Detailed information about the structure of programmes, regulations concerning assessment and progression and descriptions of individual modules are published in the University Calendar available online at  HYPERLINK "http://www.sheffield.ac.uk/calendar/" \h http://www.sheffield.ac.uk/calendar/. 21. Criteria for admission to the programme Detailed information regarding admission to programmes is available from the Universitys On-Line Prospectus at  HYPERLINK "http://www.shef.ac.uk/courses/" \h http://www.shef.ac.uk/courses/. 22. Reference points The learning outcomes have been developed to reflect the following points of reference: Subject Benchmark Statements  HYPERLINK "https://www.qaa.ac.uk/quality-code/subject-benchmark-statements" https://www.qaa.ac.uk/quality-code/subject-benchmark-statements Framework for Higher Education Qualifications (2014)  HYPERLINK "https://www.qaa.ac.uk/docs/qaa/quality-code/qualifications-frameworks.pdf" https://www.qaa.ac.uk/docs/qaa/quality-code/qualifications-frameworks.pdf University Strategic Plan  HYPERLINK "http://www.sheffield.ac.uk/strategicplan" http://www.sheffield.ac.uk/strategicplan Learning and Teaching Strategy (2016-21)  HYPERLINK "/polopoly_fs/1.661828!/file/FinalStrategy.pdf" /polopoly_fs/1.661828!/file/FinalStrategy.pdf 23. Additional information Regular research seminars are provided that cover the scope of aspects of Mathematics & Statistics which are accessible to and interesting for students on this programme.  This specification represents a concise statement about the main features of the programme and should be considered alongside other sources of information provided by the teaching department(s) and the University. In addition to programme specific information, further information about studying at «Ӱҵ can be accessed via our Student Services web site at  HYPERLINK "http://www.shef.ac.uk/ssid" \h http://www.shef.ac.uk/ssid.     mast30 ver23-24 PAGE1 Programme Specification A statement of the knowledge, understanding and skills that underpin a taught programme of study leading to an award from «Ӱҵ  -.9:;>LMSTUfgrst~    7 8 < F G H f g s ĹϪĹĹĹĹĹĹڢhh4S>*V*䴳䴳V䴳4䴳V5>*45>*V9Ա< .: $Ifgd$1$gd$a$gd4S$<a$ :;MTobY $Ifgd (($Ifgdkd$$Ifs0 <(   t 0n(4d4 saApyt9TUgsof[ $1$Ifgd $Ifgdkd$$Ifs0 <(   t 0n(4d4 saApyt9stoff $Ifgdkd$$Ifs0 <(   t 0n(4d4 saApyt9off $IfgdkdL$$Ifs0 <(   t 0n(4d4 saApyt9 of[ $1$Ifgd $Ifgdkd$$Ifs0 <(   t 0n(4d4 saApyt9 8 G obW $1$Ifgd (($Ifgdkd$$Ifs0 <(   t 0n(4d4 saApyt9G H g obW $1$Ifgd (($Ifgdkd$$Ifs0 <(   t 0n(4d4 saApyt9 oi^^^ $$Ifgd$gdkd\$$Ifs0 <(   t 0n(4d4 saApyt9       ! " # $ 3 4 = D E q r ¸ɸۮ¸ɸۮۅvkhhHCJaJjhhHCJUaJhh4S6CJaJhh4SCJaJhhVE5hh4S5>*hhVE5>*hhVE>*\ h>*\hh>*\hh>*hhVECJaJhhVE>*hh4S>*hhVE6>** QFFF $$Ifgdkd $$IfdF P(   t0n(    4daFpyt9  ]RRRR $$Ifgdkd$$IfdF P(   t 0n(    4daFpyt9   " ZOOO $$Ifgdkd$$Ifd4F P(`   t 0n(    4daFpyt9" # $ 4 E ZTTKKK@ $1$Ifgd $Ifgd$gdkd$$Ifd4F P(    t 0n(    4daFpyt9   < S T e f g m n o p q r s ǻǻwpf\hhVE5>*hh4S5>* hg5>*hhVE5CJaJhhHCJaJhh4S6CJaJhh4SCJaJhhVECJaJhhCJaJhhVE6CJaJ,jhhH6>*B*CJUaJphU#hh4S6>*B*CJaJphUjhhHCJUaJ$ g 4++ $Ifgdkd $$Ifs\8"(FsU  t 0(4d4 sa_p(yt9 $1$Ifgdg n o p q +kd $$Ifs\8"(FsU  t 0(4d4 sa_p(yt9 $1$Ifgd $Ifgdq r Nkdt $$Ifs0 ( k  t 0#(2 s4d4 saPpyt9 $Ifgdg $Ifgd$gd1$gd 67=?˿״״hhBCJaJhh4S5CJaJhhVE5CJaJhhCJaJhgCJaJhhVECJaJhh4SCJaJG c[[K;&dx$Ifgd&d$Ifgdg$a$gdkdK $$Ifs0 ( k  t 0#(2 s4d4 saPpyt9 $Ifgdno@ABDFGνhghh4SCJaJhhrCJaJhh4S5CJaJhhVE5CJaJhhVECJaJ!jhhH0J#CJUaJhh0J#CJaJhhHCJaJjhhHCJUaJhhCJaJ.oE==$a$gdmkd" $$Ifd^'' t0'2d4dap yt95$$d%d&d'd(d1$IfNOPQRgd xx$Ifgd x$Ifgdxx $1$Ifgdskd $$IfsX'Q'  0Q'4d4 sazp yt9 $IfgdAtii $1$Ifgdkdi$$Ifs0PX'I%  0Q'4d4 sazpyt9ABDGtrgg $1$Ifgdkd1$$Ifs0PX'I%  0Q'4d4 sazpyt9,-.01 ! !#${|"#&'(*ӻǰߨߨǰߨhCJaJhh4SCJaJhhVE6CJaJhhVE5CJaJhh4S5CJaJhhVECJaJhhrCJaJhhGCJaJB-tii $1$Ifgdkd$$Ifs0PX'I%  0Q'4d4 sazpyt9-.1tii $1$Ifgdkd$$Ifs0PX'I%  0Q'4d4 sazpyt9!tnncV P$1$Ifgd $1$Ifgd1$gdkd$$Ifs0PX'I%  0Q'4d4 sazpyt9 $1$IfgdukdQ$$IfsJ'3'  03'4d4 sap yt9 nccc $1$Ifgdkd$$Ifs0!J'!U 03'4d4 sapyt9 !$|\QQQ $1$Ifgdkd$$IfsF}!J'fxU  03'    4d4 sapyt9\QD P$1$Ifgd $1$Ifgdkd$$IfsF}!J'fxU  03'    4d4 sapyt9#' $1$Ifgdukd$$IfsJ'3'  03'4d4 sap yt9'(+\SHH $1$Ifgd $IfgdkdS$$IfsF}!J'fxU  03'    4d4 sapyt9*+  HIKLMNOSpqyz|~ݽɛwlhhucDCJaJ#hhVE5B*CJ\aJph#hhG5B*CJ\aJph hhVE5B*CJaJph hh4S5B*CJaJphhhVE6CJaJhh4S5CJaJhCJaJhhVECJaJhhGCJaJhhVE5CJaJ*\QQQ $1$Ifgdkd3$$IfsF}!J'fxU  03'    4d4 sapyt9 \QQQ $1$Ifgdkd$$IfsF}!J'fxU  03'    4d4 sapyt9IM\QQQ $1$Ifgdkd$$IfsF}!J'fxU  03'    4d4 sapyt9MNOq\V9$ @ $d%d&d'd(dNOPQRgd1$gdkd$$IfsF}!J'fxU  03'    4d4 sapyt9qzv !""S#k5x$$d%d&d'd(dIfNOPQRgdg x$Ifgd $Ifgd x$Ifgd $Ifgdg5x$$d%d&d'd(dIfNOPQRgd  u v !!! !!!" """""""# ####R#S#g#h#s##$ $$J$K$S$T$$$ʻʻ껧hhVEB*CJaJph hhgCJOJQJ^JaJ&hhG5CJOJQJ\^JaJhhGB*CJaJph#hhG5B*CJ\aJphhhG5CJ\aJhhGCJaJhhucDCJaJ1S#h#K$T$$T5x$$d%d&d'd(dIfNOPQRgdg 'x$Ifgdg3$$d%d&d'd(dIfNOPQRgdg5$$d%d&d'd(dIfNOPQRgdg$$$$$$% %%%%%& &&&&&' '''''''(( (((.(/(() ))))ȶȥ}}}}laaaaaahhGCJaJ hhVE5B*CJaJph hh4S5B*CJaJphhhVECJ\aJhh>3CJaJ hh>3CJOJQJ^JaJ#hgB*CJOJQJ^JaJph)hh>3B*CJOJQJ^JaJphhhVE5CJaJhh4S5CJaJhhVECJaJ&$$$$&'h)$xx$If^`a$gdg*x$If[$\$gdgdjkd$$IfH'`'0`'44 Hap yt9'''/()G*-\\QDD xx$Ifgd x$Ifgdg9$ @ $d%d&d'd(dNOPQRgdjkd5$$IfH'`'0`'44 Hap yt9))* **F*G**+ +++, ,,,- --------. ....;.<.=.>.?.@.A.B.k.̰یocohh4S5CJaJ hh4S5B*CJaJphhhVECJ\aJhhVEB*CJaJph)jhhH>*B*CJUaJph hh4S>*B*CJaJphhhHCJaJjhhHCJUaJhh4SB*CJaJphhhVECJaJhhGCJaJ&-->.]7xx$$d%d&d'd(dIfNOPQRgdjkd$$IfH'`'0`'44 Hap yt9>.?.@.l../\\$7xx$$d%d&d'd(dIfNOPQRgdg9$ @ $d%d&d'd(dNOPQRgdjkdG$$IfH'`'0`'44 Hap yt9k.l.../ / / //+/,/-/.///0/D/E/H///////00 00H0ѵznbnnnWWJJhhm,0J#CJaJhhm,CJaJhhVE5CJaJhh4S5CJaJhhVECJ\aJhhVECJaJhhVEB*CJaJph)jhhH>*B*CJUaJph hh4S>*B*CJaJphhhHCJaJjhhHCJUaJhh4SB*CJaJph hhVE5B*CJaJph.///0/E//\M8$ @ x$Ifgd$ @ gd9$ @ $d%d&d'd(dNOPQRgdjkd$$IfH'`'0`'44 Hap yt9//J00#1=111j2k2dskde$$IfH'`'0`'22 H44 Hap yt9 @ x$Ifgd @ x$Ifgd H0I0J0~00000011!1"1#1<1=1>1H1t1u11111111222 2H2h2i2j2k2l222331323ԼԼԼxxxmhghVECJaJhhGCJaJ hhVE5B*CJaJph hh4S5B*CJaJphhhVECJ\aJhhVECJaJhhm,0J#CJaJhhHCJaJjhhHCJUaJhhm,CJaJ!jhhH0J#CJUaJ*k2l2223334363LGGgdjkd$$IfH'`'0`'44 Hap yt9$xx$Ifa$gdg9$ @ $d%d&d'd(dNOPQRgd233343536373G3Y3Z34474G44444444444555555555 5 5 5 5 55{wkh4SB*CJaJphhHhVEB*phhP+8jhP+8U)jhhH>*B*CJUaJph hh4S>*B*CJaJphhhHCJaJjhhHCJUaJhh4SCJaJhhVECJ\aJjhhHCJUaJhhVECJaJ%6373444555555 5 5ytrrrrrrrrgdjkd%$$IfH'`'    0`'44 Hap yt9 xx$Ifgd$ @ gdg 5 5 55(5)5*5B55aVM$<:Da$ $<<:Da$4$ 9r $d%d&d'd(dNOPQRa$1 9r $d%d&d'd(dNOPQR4$ 9r $d%d&d'd(dNOPQRa$55555555 5$5%5&5'5(5)5*5,5A5B5555555555555ƾưӬhhVECJaJh4S5B*CJphhVEh4S5B*CJphhP+8hHhq'B*mHnHphuh4SB*phjh4SB*UphhVEB*phhm,B*CJaJphh4SB*CJaJphhB*CJaJph55555555gd:D<<:D$<:Da$50P. A!`"`#@$% DpnL r;=ouk!XcPNG  IHDR1tbIDATxoyo9,B( 4ot]/@#gH)//yS`.{kAVQeX}HaHKh;iݠ{(iwgof3}xY:Kg,tY:Kg,tY:Kg,tY:Kg,tY:Kgiɬ;NޛSd'JcuT&UT'?э舞tcJ.S;s3_8'MY:PhNqr'*9YDr(3?3*܏ԽaEr++3 ?SU:R0wԤhvf;b8c :L;oxrz&(b:cxͥo_ 蔋)u;UR{,{vԔ}XmUT6\8:Xϳ&aEtrv*:=n5NwTZ99G=UWԁq׹8(\Ϡt>gεkӜH{`c 743h3 6}M_ܶANCΩDL\ nt5QPӍʙOy;}ayrS;n_Qo'%ΝB:C]%gvröy D6:ޙNK9%gr?"g[@Eg;E+g9ܜdB:DR+g\a^xGZ8/3;SQ>y]LL/QHq*Ύ^pJ[7|:Q0s=aOd7{N9Nhd.X Ǻ3>SWǓ= Y|mnń, uu?ӝ8W,xC)r2}C>AMtB{IOǯ=EwW"ֆwӝqgxqsޱŒB +8qZJ2jr?h%,s*}s+3BEtyU wT~|w<#~A+>Lo-s*P4qZxN2uO$KDNS +ppG'PeKWNJYbhΣs '@R0Y̹wsyVcWx)3,[@;46Y4Ow;c .,S\ >TDʉ5o10}k-Z9UI*~7Ou xn;sgP'N.'K+֐sOq:4g<(2w~Rq>2NWq;lkKɔW9c}N ]Ѿ.;/shpZ;"}^S9+ ˹.gHi7&7zs#Sgnas6Se2@3pil|ʉӧwӜG,Sgt4k'Ħ]4)l]Fq[(oق,i|1s:(Ā ;×|S:Sik8g_͙rbk rv'EGqFŒt9pUߖhE`X@_F`~9KKyeQ~A8#k9; Ixm;Cd8P' >9}r&-}*pChlNڹF#~FuW ~Czqg(6(&I)KxT/qi?tqM}8+B;Ct*^ VEm'Y9uB]t)rj9i1:9p`>tr#~Zαb]N_1K r2 ܢ?йj~v♰3sһNGr)gh N,cߝ(%Zigtv0N;oN<Ӕ8ddOwx7N cȹN>q2]7B.Oq:$_'6.Bq _fƙ?Pw**ǛgȕTmG4~'Eq @QVV`z 9B0Tx:3ֻG HyFai*s'O9%('NwE~bҰ$H9֔3Ki~4R$dl%WJ9~g?J-*S2ui]P'_N9{0 t;SAs9fhr J8=NNf Viw::б3sb1ogM8Y 8x +ySY:Cpd;'ؘ̜)iΊC}'9w8!3gфwRpL !0C[Rϙ4x3P9ĩ~|2CZ G3;qz*8t]*-T(CUUXB$VA4 Zfz[tY4N*nfDxt1 T# TņC ^3?/K{e >SNݣгht9\3/`ShnFP T2ҫz;֧6K* 9:J3bZznA:TNh:O'91  c5G'jVmG2Ut9=J:sqvtku|Nl<2OJ7cɫYXN=6W[qM8,Oo!"tکj^h%&hC;C_L*;@0] ۤR4suzRh!\4Ӣ)7N .cfdj'7(Hy|8qKxS$ /[3sqR!9_tVL c8|,u $5^K_unԺL:it1OAaz U(ݛSeQ i; f>׎ 菴˭?N(s%q CĢbTao9Mv}9R&$\R' L,#&ᒢޱ].s9rn%p/*/9.t zl`Aj:GLLR'/tQ@S;'axl1)G:`zkq^0iˇɄ 8koВSI`2:M7iGb9i0EwW6VA>|gצtv*oYq[fNioo'mu';buIsuzBpq>׌eǭdTN="*gPc-gQC[.Q\8,ӕH/wvw7lV{q8W`H: / 3N։SZ99L{V̂*~KYe!cv*iiĮN3djꎥ{m]ATr.Θ N#ddĖNZc=4 n/?nJwj{f ;}ۤyZ?ǹ>Z!ʦ8n(,r5ܖ⭰QzĿ=;E"',70]ڷ:եxǥ!<;~{Zv0n;{Nu+ZE7՗? Z'-YD}gq/Z'خi֣/;N\9/Gf]|Vm;Wos^ucsX3+[MhzD^jlCKchj= ȣZ*s/^p f/)T{;nVsI-Sڏ~ICHZ}aM6:!bSEӇP=Rf; f *Gn7}9u4݅] T5gwk^?ټf;;3w~CS}rb8lQ>5>#dd)ܦ au]?'!p tM{\g9TjV'֌t]` l*Fc艕zP]N3=aNqkӝFഛtJJU5}I+s?vb?#pN(lܶ~Z 9;o~qNvƜ]w hiR%d WH=TXO:cptN*YORD#Dsܧ=^U@݊_\NK43'DfЫJ{MZ Mɸ[ϏĐalcG5z=axlP$4s-<ğֿF)bq~һ!OդMk3\+b !|0L}ތldN T-twhާ0v|'#m-suJx(h:w\nGEpb+Q:[o>J-0ȡ$̍MFi7ߠj䤮32 Hhi618ۧfqR?-9މ$i14E8c}d@}=o:CN]}S+[c{Nݻ0d7w*+Ԃ*SU+#|Y:Kg,tY:Kg,tY:Kg,tY:Kg,tY:Kg,tY: |72\7{IENDB`$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfA!vh#v #v:V s  t 0n(5 54d4 saApyt9$$IfF!vh#v #v#v :V d  t0n(5 55 4daFpyt9$$IfF!vh#v #v#v :V d  t 0n(5 55 4daFpyt9$$IfF!vh#v #v#v :V d4  t 0n(+5 55 4daFpyt9$$IfF!vh#v #v#v :V d4  t 0n(+5 55 4daFpyt9$$If_!vh#v#vF#vs#vU:V s  t 0(55F5s5U4d4 sa_p(yt9$$If_!vh#v#vF#vs#vU:V s  t 0(55F5s5U4d4 sa_p(yt9$$IfP!vh#v #vk:V s  t 0#(5 5k/ 2 s4d4 saPpyt9$$IfP!vh#v #vk:V s  t 0#(5 5k/ 2 s4d4 saPpyt9$$If!vh#v':V d t0'5'2d4dp yt9$$Ifz!vh#vQ':V s  0Q',5Q'/ 4d4 sazp yt9$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpyt9$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpyt9$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpyt9$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpyt9$$Ifz!vh#vI#v%:V s  0Q'5I5%/ 4d4 sazpyt9$$If!vh#v3':V s  03'53'/ 4d4 sap yt9$$If!vh#v!#vU:V s 03',5!5U/ 4d4 sapyt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#v3':V s  03'53'/ 4d4 sap yt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#vf#vx#vU:V s  03'5f5x5U/ 4d4 sapyt9$$If!vh#v`':V H0`'5`'4 Hp yt9$$If!vh#v`':V H0`'5`'4 Hp yt9$$If!vh#v`':V H0`'5`'/ 4 Hp yt9$$If!vh#v`':V H0`',5`'/ 4 Hp yt9$$If!vh#v`':V H0`',5`'4 Hp yt9$$If!vh#v`':V H0`'5`'/ 22 H4 Hp yt9$$If!vh#v`':V H0`'5`'4 Hp yt9DdP  3 3"(($$If!vh#v`':V H0`',5`'/  4 Hp yt9",x666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666p62&6FVfv2(&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@66666$OJPJQJ^J_HmH nHsH tH<`< Normal_HmH nHsH tH<@< Heading 1$@&CJ aJ << Heading 2$@&CJaJ@@@ Heading 3$@& >*CJaJ@@ Heading 4$@& 5CJaJ88 Heading 5$@&5@@ Heading 6$@& 6CJaJDA D Default Paragraph FontRi@R 0 Table Normal4 l4a (k ( 0No List @>@ Title$$x 5CJHaJH^J^ Subtitle$$hP$6B*CJ0OJPJQJ^JaJ0phfff:: :V4d4 s442#2 :V4d44:3: :V4d4 s44:C: :V4d4 s442S2 :V4d44:c: :V4d4 s44:s: :V4d4 s4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4422 :V4 H4444  m,0Header B#.. m,0 Header Char4 4 "m,0Footer !B#.!. !m,0 Footer Char6U`16 m,0 Hyperlink >*B*phT/AT m,0Unresolved Mention1B*ph`^\q 0/Q0 &0ps1 CharPJtH 8Ob8 %0ps1&d<<PJtH NP@rN (G0 Body Text 2'CJOJPJQJ^JaJtH T/T 'G0Body Text 2 CharCJOJPJQJ^JaJtH @/@@ G0List )^`OJPJQJ^JtH ^^@^ >30 Normal (Web)*dd[$\$CJOJPJQJ^JaJtH @ @g0Revision+_HmH nHsH tHPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vj\{cp/IDg6wZ0s=Dĵw %;r,qlEآyDQ"Q,=c8B,!gxMD&铁M./SAe^QשF½|SˌDإbj|E7C<bʼNpr8fnߧFrI.{1fVԅ$21(t}kJV1/ ÚQL×07#]fVIhcMZ6/Hߏ bW`Gv Ts'BCt!LQ#JxݴyJ] C:= ċ(tRQ;^e1/-/A_Y)^6(p[_&N}njzb\->;nVb*.7p]M|MMM# ud9c47=iV7̪~㦓ødfÕ 5j z'^9J{rJЃ3Ax| FU9…i3Q/B)LʾRPx)04N O'> agYeHj*kblC=hPW!alfpX OAXl:XVZbr Zy4Sw3?WӊhPxzSq]y --9 ***- *$)k.H02355%*.05?EGJMPRU:Ts G  " g q A- 'MqS#$'->..//k263 555 !"#$&'()+,-/12346789:;<=>@ABCDFHIKLNOQSTVqSe%&;&& '+''(H(((!)=)t)))*h*,,,-XXXXXXXXXX %'-!,b$L r;=ouk!Xc7$# @(    FA?"image2.png#" ?  T!e!e"Rectangle 13"D2?PK!8[Content_Types].xmlAN0EH%N@%邴K@`dOdlyLhoDX3'AL:*/@X*eRp208J妾)G,R}Q)=HiҺ0BL):T뢸WQDY;d]6O&8* VCLj"󃒝 yJ.;[wIC_ :{IOA !>Ø4 p;fɑ3׶Vc.ӵn(&poPK!8! _rels/.relsj0 }qN/k؊c[F232zQLZ%R6zPT]( LJ[ۑ̱j,Z˫fLV:*f"N.]m@= 7LuP[i?T;GI4Ew=}3b9`5YCƵkρؖ9#ۄo~e?zrPK!xdrs/e2oDoc.xmlS0#4IՅ6jB*BZApfmҿg얶 3{3^?NeGhkx5+9SNθ}ÿ۾[rQNXTO j5FEchxce30H.H[}1zxi\_k%WQEfNb^!mZZ{7CAG^K=(_#q&PxT?ؼ"̅p _Yv@2k$34 Oؔ:]RSd6rU8\d9?)?d4Y$q|HWRꯔtzk6;o,mEG~K.%;iIV°i "0P+F㏃řHUǘÇ#}D8{|y?&OP.`e9`6?PK!+S drs/downrev.xmlLAK0!M\j֦,xĪ1mƶl3)MڭٓfxbA,8ޓۍxS&!kOˋ֟*C(FCK ?"'g"S+dNU*:3XNð㳾ʪ"pgt(3  D )lm& BPPK-!8[Content_Types].xmlPK-!8! /_rels/.relsPK-!x.drs/e2oDoc.xmlPK-!+S drs/downrev.xmlPK) B S  ?-0t T _oh24j9m5t41r _e2oo9u3do1pa _13ts2med3l67 _b0vxn133qzz1 _ocojx61y4kxu _iv4xf5k0fl38 _uyu3aj387fji _lc8exw96pwz8_gjdgxs _k6br1mrerhz5_30j0zll #$rl&-'7+- #$rl&-'7+-TYuz,------ - -)-*---IR : M R{$$,------ - -)-*---333333333333..8899ss  rsBD|#& ILSSG"G"-'-'.'.'1+1+Y+Y+Z+Z+,, - ------'--..8899ss  rsBD|#& ILSSG"G"-'-'.'.'1+1+Y+Y+Z+Z+,, - ------'--  D o>3q'VV(m,F26P+8ucDVE4SGfZrHgG%B9|,-@ -@Unknown G.[x Times New Roman5Symbol3. .[x Arial7GeorgiaW,|8DengXian LightI{~ LightC.,.{$ Calibri Light? |8DengXianI{~7..{$ CalibriA$BCambria Math"qh''H&Q&R!`@0,-C@P $PVE2!xxau Claire AllisonClaire Allison Oh+'0d   , 8DLT\Claire AllisonNormalClaire Allison2Microsoft Office Word@F#@lvyq@lvyqH& ՜.+,D՜.+,D hp  «ӰҵQ,  Title  8@ _PID_HLINKSA<`=http://www.shef.ac.uk/ssidiKIhttps://www.sheffield.ac.uk/polopoly_fs/1.661828!/file/FinalStrategy.pdfD )http://www.sheffield.ac.uk/strategicplanBJhttps://www.qaa.ac.uk/docs/qaa/quality-code/qualifications-frameworks.pdf:|@https://www.qaa.ac.uk/quality-code/subject-benchmark-statementsl} http://www.shef.ac.uk/courses/^Q %http://www.sheffield.ac.uk/calendar/c#http://www.shef.ac.uk/maths '(https://www.hesa.ac.uk/innovation/hecos Bhttps://www.hesa.ac.uk/support/documentation/jacs/jacs3-principal  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdfghijklmnopqrstvwxyz{|}~Root Entry F@qData e1Tableux6WordDocumentSummaryInformation(DocumentSummaryInformation8CompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q