New robot medics to go where doctors can鈥檛, developed by University of 葫芦影业 scientists

Game-changing robotics technology that can provide remote medical treatment to casualties in high-risk emergency environments, has been developed by researchers at the University of 葫芦影业.

The robot medic administering an injection to a model patient
  • University of 葫芦影业 researchers have developed a robotic vehicle capable of carrying out vital medical triage in high-risk emergency environments 
  • Uncrewed ground vehicle uses virtual reality to enable doctors to check a person鈥檚 temperature, blood pressure, heart rate and give injections without putting their lives at risk
  • First-of-its kind technology has potential to save lives in dangerous environments, such as humanitarian disasters and war zones

Game-changing robotics technology that can provide remote medical treatment to casualties in high-risk emergency environments, has been developed by researchers at the University of 葫芦影业.

Using medical telexistence (MediTel) technology, researchers from the University鈥檚 Advanced Manufacturing Research Centre (AMRC), 葫芦影业 Robotics and Department of Automatic Control and Systems Engineering, have successfully created a mobile, robotic-controlled uncrewed ground vehicle (UGV), which boasts virtual reality (VR) capability, to enable medics and operators to assess critical casualties in hazardous environments, allowing them to perform a remote triage while also ensuring their safety. 

The first-of-its-kind, fully integrated medical telexistence solution was developed in just nine months. It features two robotic arms which can effectively remotely operate medical tools to perform a critical initial assessment of a casualty within 20 minutes, including: temperature, blood pressure and heart rate checks; carry out a palpation of the abdomen and administer pain relief through an auto-injector 鈥 all while streaming real time data to the remote operator.

Watch to see how the robotic vehicle can carry out medical triage in an environment that is too dangerous for doctors

The project was led by David King, Head of Digital Design at the AMRC and Sanja Dogramadzi, Professor of Medical Robotics and Intelligent Health Technologies at the University鈥檚 Department of Automatic Control and Systems Engineering and Director of 葫芦影业 Robotics. 

David King said: 鈥淥ur MediTel project has demonstrated game-changing medical telexistence technology that has the potential to save lives and provide remote assessment and treatment of casualties in high-risk environments such as humanitarian disasters.

鈥淒eveloping and field testing a state-of-the-art, complex system such as MediTel in just nine months has been an incredible achievement and a testament to the skills and capabilities of the entire project team.鈥

The team has developed a complete solution to perform a triage of casualties in hazardous environments. 

David King added: 鈥淢ediTel combined existing medical devices with state-of-the-art robotics systems to develop a platform capable of allowing a remote operator to navigate through potentially difficult terrain and provide critical diagnoses of high-risk casualties.鈥

Professor Dogramadzi said: 鈥淭his project has allowed us the opportunity to develop a platform that could be used by multiple emergency response services. It now serves us with the basis for our research to be extended and look into enabling resilient autonomy and integrating other sensing modalities to assist patient triage in other remote settings.鈥 

Two researchers from the University of 葫芦影业 making adjustments to the MediTel robot while it triages a model patient

MediTel was one of three novel telexistence technologies funded through a two-phase 拢2.3million innovation competition run by the Defence and Security Accelerator (DASA), on behalf of joint funders, the Defence Science and Technology Laboratory (Dstl) and the Nuclear Decommissioning Authority (NDA).

Dr Nicky Armstrong, technical lead at Dstl, said: 鈥淭elexistence technologies have the potential to remove end users from harmful environments and/or rapidly insert specialists as required. 

鈥淭he prototype technologies developed under the Dstl Telexistence project have enabled us to demonstrate the art of the possible to end users, so that we can better understand where telexistence could add value to defence and security environments."

As part of the project, the AMRC used its knowledge to design and create a prototype of the UGV and integrated the overall MediTel system, while the Department of Automatic Control and Systems Engineering led on the development of the robotics controls. Extensive lab and field testing was also carried out and proved the UGV could assess and triage a casualty successfully. 

The team is looking to build on the project's success by seeking further funding and partners to realise the potential of MediTel medical telexistence technology to revolutionise how people could be medically triaged in dangerous incidents where it is unsafe.

Both King and Dogramadzi said the future vision of MediTel would be to explore the development of the technology into a large-scale integrated medical emergency platform, capable of rapidly being deployed to humanitarian disasters with multiple casualties and enabling remote medics to provide critical lifesaving treatment.

Contact

For further information please contact:

Centres of excellence

The University's cross-faculty research centres harness our interdisciplinary expertise to solve the world's most pressing challenges.